The Turing Test is a modification to the Imitation Game where a digital computer plays the part of A and a human (of any gender) plays the part of B. Here, A’s task is to convince the interrogator that it is a human while B’s is to convince the interrogator of the truth. If A wins this game, the computer passes The Turing Test. Passing the test, Turing claims, is a meaningful, telltale sign of machine artificial intelligence. I shall use the term “machine” to mean “digital computer.” By “digital computer,” I shall mean the kind of electrical device equipped with a processing unit and memory. I shall be more explicit when I intend to refer to Turing machines, which are abstract, hypothetical rather than electrical devices. I shall also use X Machine or an “X application” to refer to a digital computer running the algorithm X. . The Turing Test has spawned an immense literature in several subfields of cognitive science. Arguably, it is also part of the reason for the pride of place given to question-answering in natural language processing (and AI in general).
Nevertheless, in philosophy, the importance and meaning of The Turing Test have been a matter of longstanding controversy. I shall try to argue in what follows that there is a central insight about artificial intelligence embedded in Turing’s proposal: artificially intelligent systems would be able to solve a general class of problems without being debilitated by problems of exponential explosions in time and space complexity. In this respect, they are like human minds and unlike garden-variety computer programs like word processors, search engines, and calculators, all of which are designed to solve a very specific and fixed range of problems.
Continue reading “A New Turing Test” »